Intravital Microscopy of the Inguinal Lymph Node
نویسندگان
چکیده
Lymph nodes (LN's), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infection. The inguinal LN, like all LNs, has an extensive microvascular network supplying it with blood. In general, this microvascular network includes the main feed arteriole of the LN that subsequently branches and feeds high endothelial venules (HEVs). HEVs are specialized for facilitating the trafficking of immune cells into the LN during both homeostasis and infection. How HEVs regulate trafficking into the LN under both of these circumstances is an area of intense exploration. The LN feed arteriole, has direct upstream influence on the HEVs and is the main supply of nutrients and cell rich blood into the LN. Furthermore, changes in the feed arteriole are implicated in facilitating induction of adaptive immune response. The LN microvasculature has obvious importance in maintaining an optimal blood supply to the LN and regulating immune cell influx into the LN, which are crucial elements in proper LN function and subsequently immune response. The ability to study the LN microvasculature in vivo is key to elucidating how the immune system and the microvasculature interact and influence one another within the LN. Here, we present a method for in vivo imaging of the inguinal lymph node. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, and quantification of vessel magnitude. Methods for perfusion of the microvasculature with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.
منابع مشابه
Inguinal Lymph Node Metastasis as the First Presentation of Endometrial Carcinoma
Endometrial adenocarcinoma is uncommon in fewer than 40-year-old people. The first common sign and symptoms are abnormal vaginal bleeding and discharge. Metastasis is occurred in the late stage. Here we present a 31-year-old nullipar woman who was admitted to surgical ward with enlarged right inguinal lymphnode from one month ago. She had no history of previous malignancy, infectious condition...
متن کاملAutonomous T cell trafficking examined in vivo with intravital two-photon microscopy.
The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naive CD4(+) T cells in t...
متن کاملIntegrated Systems and Technologies Unexpected Dissemination Patterns in Lymphoma Progression Revealed by Serial Imaging within a Murine Lymph Node
Non-Hodgkin lymphoma (NHL) is a heterogeneous and highly disseminated disease, but the mechanisms of its growth and dissemination are not well understood. Using a mouse model of this disease, we used multimodal imaging, including intravital microscopy (IVM) combined with bioluminescence, as a powerful tool to better elucidate NHL progression. We injected enhanced green fluorescent protein and l...
متن کاملUnexpected dissemination patterns in lymphoma progression revealed by serial imaging within a murine lymph node.
Non-Hodgkin lymphoma (NHL) is a heterogeneous and highly disseminated disease, but the mechanisms of its growth and dissemination are not well understood. Using a mouse model of this disease, we used multimodal imaging, including intravital microscopy (IVM) combined with bioluminescence, as a powerful tool to better elucidate NHL progression. We injected enhanced green fluorescent protein and l...
متن کاملNitric Oxide and TNFα Are Critical Regulators of Reversible Lymph Node Vascular Remodeling and Adaptive Immune Response
Lymph node (LN) vascular growth, at the level of the main arteriole, was recently characterized for the first time during infection. Arteriole diameter was shown to increase for at least seven days and to occur via a CD4(+) T cell dependent mechanism, with vascular expansion playing a critical role in regulating induction of adaptive immune response. Here, using intravital microscopy of the ing...
متن کامل